TIME DEPENDENT SCHRODINGER WAVE EQUATION
In quantum mechanics, the wave function ψ corresponds to the variable y of wave motion. We know that the wave function for a particle is given by
Ψ(x,t)=A exp[-i(ωt-kx)]
Put ω=2πv and K=2π/h
Ψ(x,t)=A exp[ -i(2πvt-2π/h x)] (1)
If E= total energy of the particle
P= momentum of the particle then
E=hv=2πЋ/p
Where Ћ = h/2π
Putting in equation (1), we get
Ψ(x,t)= A exp[-i(E/Ћ t –p/ Ћ x)]
Ψ(x,t) = A exp[-i/ Ћ(Et-px)] (2)
This equation is a description of the wave equivalent of a free particle moving in the +ve x- direction. But generally we are interested in situations where particle is not free i.e it is subjected to some external force.
Differentiating equation (2) w.r.t. x
dΨ/d x =A exp[-i/ Ћ(Et-px] / x[-i/h(Et-px)]
= A exp[-i/ Ћ(Et-px)](i/ Ћ p)
dΨ/ dx = Aip/ Ћ exp[-i/ Ћ(Et-px)]
Again differentiating wr.t. x
dΨ/d x2 =Aip/ Ћ exp[ -i/ Ћ(Et-px)](i/ Ћ p)
= A(ip/ Ћ)2 exp [-i/ Ћ(Et-px)]
dΨ/dx2= -p2/h2 Ψ (3)[ using equation(2)]
Or p2 Ψ= – Ћ2 d2Ψ/ dx2
Also on differentiating (2) wr.t. t ,we get
dΨ(x,t)/dt= A exp [-i/ Ћ(Et-px)] (-i/ Ћ E)
dΨ/dt =-(i/ Ћ) E Ψ
or E Ψ=(i Ћ) Ψ/ t (4)
When the particle is acted upon by a force then its total energy is the sum of Kinetic and potential energies i.e.
Total energy = Kinetic energy + potential energy
E=p2/2m +V
E Ψ= p2/2m Ψ+ V Ψ (5)
Putting equations (3) and (4) in equations (5), we get
-Ћ/t dΨ/dt=-h2/2m d2Ψ/dx2+V Ψ
i Ћ dΨ/dt= – Ћ2/2m( Ψ/x2) + V Ψ (6)
Which is time dependent form of Schroedinger wave equation
In three –dimensional form
i Ћ Ψ/t =- Ћ 2/2m(d2Ψ/dx2+ d2Ψ/dy2+ dΨ/dz2)+ V Ψ
where the particle potential V is a function of x,y,z and t . Any restriction on the particle motion will effect the potential energy V. once V is known, Schroedinger equation may be solved for the wave function Ψ of the particle form where Ψ2 may be determined.