Relativistic addition of velocity

Let there are two inertial frames of references S and S’. S is the stationary frame of reference and S’ is the moving frame of reference. At time t=t’=0 that is in the start, they are at the same position that is Observers O and O’ coincides. After that S’ frame starts moving with a uniform velocity v along x axis.

Suppose a particle P is place in frame S’ and it is moving.

The velocity component of particle P from observer O’ in frame S’ will be:

u’x = dx’/dt’                 (1a)

u’y = dy’/dt’                 (1b)

u’z = dz’/dt’                  (1c)

The velocity component of particle P from observer O in frame S will be:

ux = dx/dt                     (2a)

uy = dy/dt                     (2b)

uz = dz/dt                      (2c)

From Lorentz transformation equations: Continue reading “Relativistic addition of velocity”